

Development of a learning task for a process-oriented diagnostics of developmental speech sound disorders: a pilot study

Hayo Terband^{1,2}, Margoke Nijssen¹, Frits van Brenk¹, Anniek Doornik-van der Zee^{1,3} & Ben Maassen²

¹Utrecht Institute of Linguistics - OTS, Utrecht University; ²Centre for Language and Cognition & University Medical Centre, University of Groningen; ³Division of Speech and Language therapy, HU University of Applied Sciences Utrecht

Introduction

Background

- Differential diagnosis and treatment planning of speech sound disorders (SSD) is one of the major bottlenecks in the field of pediatric speech-language pathology
- Intervention methods aim at specific parts of the speech production process, where diagnostic instruments consist of tests that measure knowledge and skills, and lack a direct relation with the underlying processes

Research goal

- An individualistic, process-oriented approach for the diagnosis and treatment of pediatric SSD
- Advantages
- · Direct leads for treatment tailored to the individual speaker
- · Evaluate and adjust treatment during the evolution of the disorder

Aim of the present study

• Development and evaluation of a learning task as an instrument to assess the acquisition of sensori-motor representations of novel speech sound units

METHODOLOGY

Participants

- 6 normally developing children: 3 male, 3 female; aged 4.8-7.8 yrs
- 5 children with SSD: 2 male, 3 female; aged 4.3-7.5 yrs (Table 1)

Table 1: Diagnostic classification of the children with speech sound disorders.

		(y;m)		PPVT [1])	(ICS [2	4]) _	(Palj	(DD	K; patak	(a)	mov. assessment			
							words	nonwoi		judgı	ment	iso – seq -		
							(% correct)	(% corre	ect)			(% co	rrect)	
CLI1	PD	5;9	m	127	4		94	100	1	2	2	85 - 83	3 - 60	
CLI2	PD+PAD	7;6	V	106	4		94	86	1	1		92 - 94	4 - 50	
CLI3	CAS/PD	4;11	V	115	3.86		94	86	0	4	ļ	77 - 78	8 - 60	
CLI4	PD	6;7	V	84	3.42		64	44	1	1		77 - 6'	7 - 40	
CLI5	CAS/PD	4;8	m	85	4.29		56	47	1	3	}	58 - 33	3 - 30	
ID	Classification		Pictur	e naming			Word r	epetition			Non-wor	d repetiti	on	
		(60 words CAI [4])					(WR; 10 words CAI)				(10 non-words similar to WR CAI)			
		PCCI	PCCCI	PSSC	atyp/typ.	PCCI	PCCCI	PSSC	atyp/typ.	PCCI	PCCCI	PSSC	atyp/typ.	
					sub.proc.				sub.proc.				sub.proc.	
CLI1	PD	0.94	0.70	.96	3/0	.98	.50	1.00	1/0	.88	.27	.94	4/1	
CLI2	PD+PAD	1.00	0.96	.97	0/0	1.00	.95	1.00	0/0	.88	.95	.95	13/5	
CLI3	CAS/PD	0.57	0.13	.80	28/9	.48	.23	.62	23/11	.71	.27	.80	26/10	
CLI4	PD	0.81	0.39	.82	4/8	.69	.77	.82	5/7	.65	.50	.73	18/24	
CLI5	CAS/PD	0.88	0.65	.92	5/4	.91	.77	.95	0/5	.73	.09	.67	4/4	
DDV as	0 [4	1 7 11	, 1 1	1 1 Г / 1	مسمط اما اسمم آم	1 1								

DDK-judgment 0 = perfect; 1 = [pataka] in sequence in normal rate, but no acceleration; 2 = [pataka] in sequence incorrect ([t] or [k] could not be pronounced), but speeding up on two different consonants ([pata], [taka]) was possible; 3 = no fluent [pataka], not in sequence; 4 = no [pataka] production either in isolation or in a sequence of two.

Procedure (Table 2)

- Learning paradigm: repetition task of nonwords from a soundboard presented via headphones
- Stimuli: 3 non-native speech sound(-cluster)s in 4 context conditions, each item repeated 3×

TABLE 2. Schematic overview of the learning task

Stage	Goal	Cond	Evample			
Siuge	Goui	Syllable /ga/ and /fa/	Syllable-cluster /mla/	Example		
Introduction	Explain target	Auditory and visual	Auditory and visual			
inti oduction	representation	input	input			
Baseline measu	irement	10 x attempt to produce t	/ga/			
	Practice target	-Sequencing	-Sequencing	/gagaga/		
	stimuli in	-Prosody	-Prosody	/`gaga/, /ga`ga/		
Training 1	different	-Alternation following		/gaka/, /gaxa/, /gaba/		
		consonant				
	conditions	-Embedding	-Embedding	/gapa/, /taga/, /tagapa/		
Break		Five minutes				
		-Sequencing	-Sequencing	/gagaga/		
	Donast training	-Prosody	-Prosody	/`gaga/, /ga`ga/		
Training 2	Repeat training	-Alternation following		/gaka/, /gaxa/, /gaba/		
	stage 1	consonant				
		-Embedding	-Embedding	/gapa/, /taga/, /tagapa/		
Endpoint meas	surement	10 x attempt to produce t	/ga/			

Data analysis & Results

Data analysis

- Consensus transcription of all utterances by two experienced speech therapists
- Dependent variables
- · Percentage consonants correct (PCC)
- · Percentage word-stress correct (PWSC; Prosody condition)

Statistics

Oral-motor

- Repeated measures analyses of variance
- Pearsons correlations
- \cdot ΔPCC (Training 2 Training 1) & auditory discrimination \cdot PCC & PWSC
- Case-wise comparison with Control group

FIGURE 2: Prosody condition: mean percentage consonants correct (PCC) and percentage word-stress correct (PWSC).

FIGURE 1: Group comparisons of mean percentage consonants correct (PCC) in the different training conditions.

Group effects

- PCC overall
- · Main effect for ga [F(1,9) = 12.616, p < .01] · Not for mla or sja
- PCC per condition
- · Prosody [F(1,9) = 20.939, p < .001]
- Embedding [F(1,9) = 4.158, p = .072]

Correlations

- \bullet Δ PCC & auditory discrimination overall
- · Word discrimination & overall learning effect [r = 0.690, p < .05]
- \bullet Δ PCC & auditory discrimination per target
- · Non-word discrimination & learning effect for ga [r = 0.649, p < .05]
- · Word discrimination & learning effect for ga [r = 0.601, p = .05]
- \cdot No significant correlations for mla or sja
- PCC & PWSC in Prosody condition • SSD Group [r=-0.651, p < .05]

Learning effects

• PCC overall

Error Bars: +/- 1 SD

- · Main effect for $mla \, [F(1,9) = 5.417, \, p < .05]$
- · Not for ga or sja
- PCC per condition
- · Embedding [F(1.9 = 5.648, p < .05]
- Sequencing [F(1.9 = 4.959, p = .053]
- PWSC: No significant effects
- No learning effect by group interactions

FIGURE 3: Overall $\triangle PCC$ vs. Word discrimination score.

DISCUSSION

- Underlying profiles vary widely per child with SSD
- Results highlight important role of perception abilities
 Strong correlation between non-word discrimination score and learning effect
- Results highlight important role of word-stress in SSD
- \cdot Higher PCC in the prosody condition for ga and sja in SSD vs controls \cdot Negative correlation between PCC and PWSC in the prosody condition
- · Detailed analysis of the individual data
- * 2 cases: trade-off between accuracy at the segmental and supra-segmental levels

Future directions

- More data needed!
- Promising results for the profiling of SSD, suggesting that a detailed assessment of the acquisition of novel sensori-motor representations could provide direct starting points for therapy planning
- Focus assessment on Embedding, Sequencing & Prosody

REFERENCES

- [1] L. M. Dunn and L. M. Dunn, "Peabody Picture Vocabulary Test-III-NL [PPVT-III-NL]" (L. Schlichting, Trans.). Amsterdam, The Netherlands: Pearson, 2005.
- [2] S. McLeod, et al., "Schaal voor Verstaanbaarheid in de Context [Intelligibility in Context Scale: Dutch]." (J.C. van Doornik-van der Zee & H. Terband, Trans.). Bathurst, NSW, Australia: Charles Sturt University, 2013.
- [3] R. Bastiaanse, et al., PALPA: 1995. Dutch adaptation of Kay J, Lesser R, Coltheart M. Psycholinguistic assessment of language processing in Aphasia. Hove, UK: Lawrence Erlbaum Associates Ltd., 1995.
- [4] B. Maassen, et al., "Computer Articulatie-Instrument (CAI)," ed. Amsterdam: Boom test uitgevers, in press.

Financial support

- The Netherlands Organisation for Scientific Research (NWO)
- Dutch Rehabilitation Fund

 $Contact:\ h.r.terband@uu.nl$