COMPARING VARIABILITY IN SPEECH MOTOR CONTROL IN DYSARTHRIA WITH PERCEPTUAL AND ACOUSTIC ASSESSMENTS

INTRODUCTION

Clinical diagnosis and characterization of motor speech disorders

- Perceptual \Rightarrow subjective and difficult to quantify.
- Acoustic \Rightarrow non-invasive and cheap, however time consuming and elaborate.
- Variability \Rightarrow promising for sub-clinical impairment detection, differentiating dysarthria type.

Research question:

University of

Glasgow

• How well does variability of speech motor control correlate with perceptual assessments of intelligibility and acoustic assessments of DDK tasks in speech of people with dysarthria?

METHODOLOGY

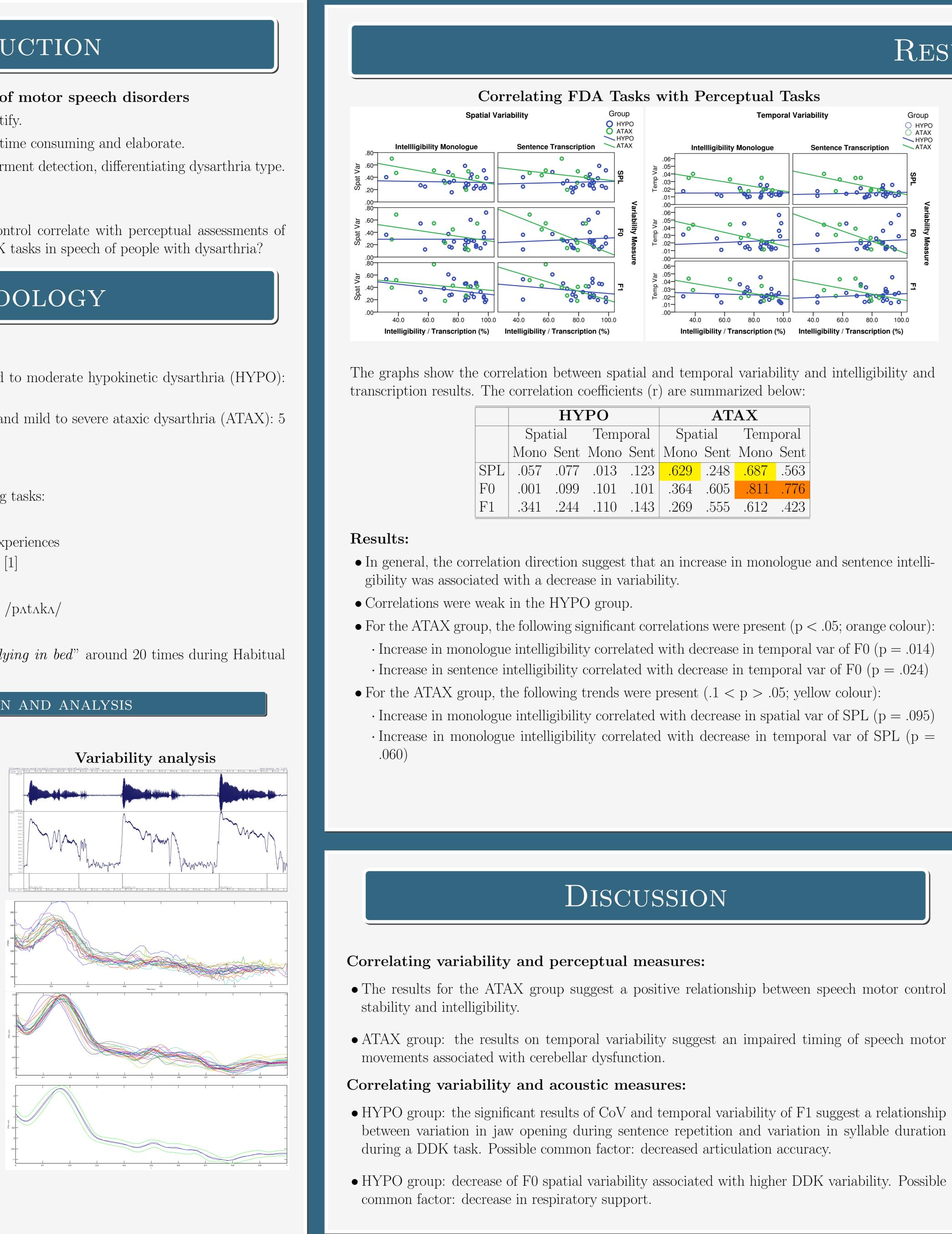
Participants

- 23 speakers with Parkinsons Disease and mild to moderate hypokinetic dysarthria (HYPO): 18 male, 5 female, aged 40-81.
- 8 speakers with various neurological diseases and mild to severe ataxic dysarthria (ATAX): 5 male, 3 female, aged 37-58.

Experimental tasks

All participants performed the following speaking tasks:

• For perceptual analysis:

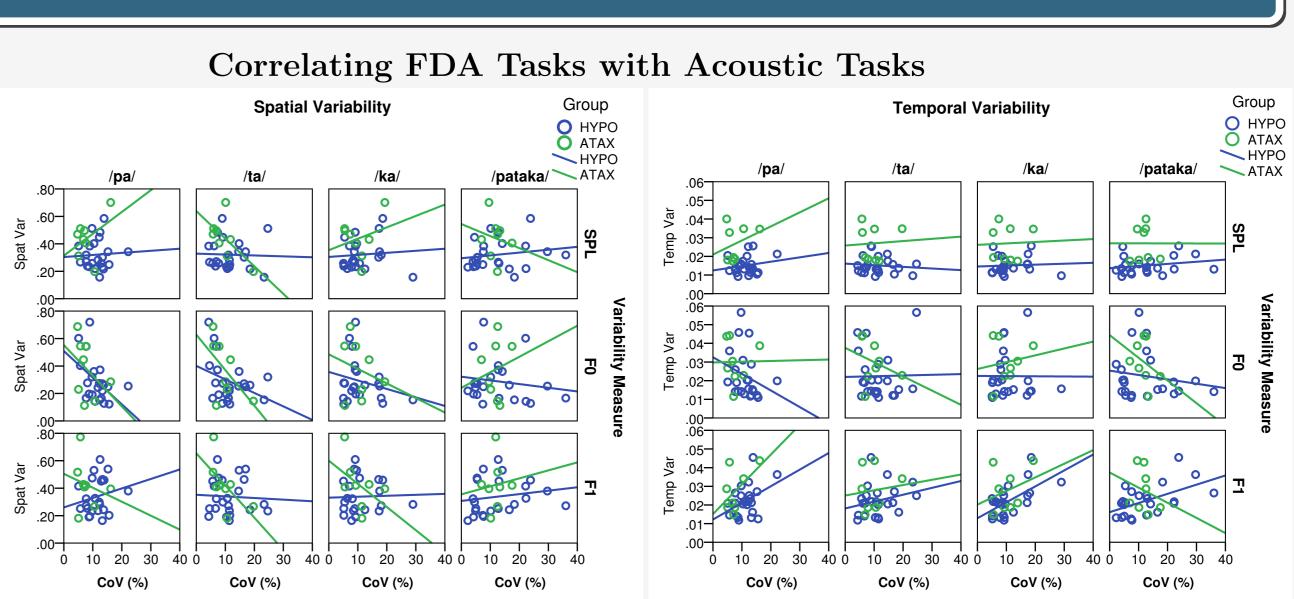

- \cdot 30 seconds monologue about past holiday experiences
- \cdot Reading a set of 10 unpredictable sentences [1]
- For acoustical analysis:
- · Diadochokinesis tasks $/p_{\Lambda}/, /t_{\Lambda}/, /k_{\Lambda}/$ and $/p_{\Lambda}t_{\Lambda}/h_$

• For variability analysis:

• Repeat the phrase "Tony knew you were lying in bed" around 20 times during Habitual speech rate

INSTRUMENTATION AND ANALYSIS

- Audio data was collected with a portable wave-recorder and head-mounted microphone.
- Acoustic analysis: calculated Coefficient of Variation (CoV) of mean syllable repetition rates of diadochokinetic tasks.
- Perceptual analysis: 15 SLT students participated in a listening experiment:
- \cdot Rate intelligibility and listening effort of a monologue on a 9-point scale (9 = perfect)intelligible; 1 = not intelligible [2].
- \cdot Transcribe unpredictable sentences. The number of correctly transcribed words per sentence were calculated.
- \cdot All results were converted to a % scale.
- Variability analysis: calculated Spatial and Temporal Variability of Amplitude (SPL), Pitch (F0), and First Formant (F1) envelopes of sentence repetitions [3,4].
- Correlations were estimated by linear regression analysis.



FRITS VAN BRENK & ANJA LOWIT

Division of Speech and Language Therapy, University of Strathclyde, Glasgow, UK. Contact: frits.brenk@strath.ac.uk a.lowit@strath.ac.uk

RESULTS

ATAX								
tial	tial Temporal							
Sent	Mono	Sent						
.248	.687	.563						
.605	.811	.776						
.555	.612	.423						

The graphs show the correlation between variability and Coefficient of Variation of syllable repetition rates in DDK tasks. The correlation coefficients (r) are displayed below:

	HYPO				HYPO			
	Spatial			Temporal				
	/pa/	/ta/	/ka/	/pataka/	/pa/	/ta/	/ka/	/pataka/
SPL	.052	.034	.082	.175	.188	.106	.063	.226
F0	.464	.356	.237	.158	.261	.017	.004	.169
F1	.199	.052	.032	.175	.400	.249	.611	.541
	ATAX				ATAX			
SPL	.405	.618	.261	.183	.302	.058	.038	.001
F0	.400	.559	.234	.166	.013	.302	.148	.327
F1	.219	.609	.449	.103	.530	.113	.299	.221

Results:

- Correlations were weak in the ATAX group.

- · Increase in CoV of /pa/ correlated with increase in temporal variability of F1 (p = .008)

CONCLUSIONS

- task might be associated with intelligibility in dysarthria.
- characteristics.

- of Medical Speech Language Pathology, 14(4):269-271, 2006.
- with dysarthria", Unpublished PhD Thesis. University of Newcastle, 2009.
- Acoustical Society of America, 99(6):3718 3727, 1996.
- Friedreich's Ataxia", Journal of Medical Speech Language Pathology, 16(4):173 180, 2009.

• Direction of correlations between variability and CoV not always clear cut; in general increase in CoV associated with increase in SPL and F1 variability and with decrease in F0 variability.

• For the HYPO group, the following significant correlations were present (p < .05; orange colour): · Increase in CoV of /pa/ correlated with decrease in spatial variability of F0 (p = .026) · Increase in CoV of /ka/ correlated with increase in temporal variability of F1 (p = .002) · Increase in CoV of /pataka/ correlated with increase in temporal variability of F1 (p = .008) • For the ATAX group, the following trends were present (.1 .05; yellow colour): · Increase in CoV of /ta/ correlated with decrease in spatial variability of F0 (p = .095)

• Variability (especially temporally) of loudness, pitch and articulation during a sentence repetition

• Using FDA besides applying DDK tasks might give a more complete picture of speech problems in hypokinetic dysarthria, as FDA is able to differentiate between loudness, pitch and articulation

REFERENCES

[1] McHenry, M.A., Parle, A.M. "Construction of a Set of Unpredictable Sentences for Intelligibility Testing". Journal

[2] Dobinson, C., "An investigation into the use of computers for conducting home practice of speech exercises for people

[3] Ramsay, J. O., Munhall, K. G., Gracco, V. L., Ostry, D. J. "Functional data analyses of lip motion." Journal of the

[4] Anderson, A., Lowit, A., Howell, P., "Temporal and spatial variability in speakers with Parkinson's Disease and